This course is focused on engineering mathematics. After completing the tutorial, you will be able to understand the basic advantageous knowledge of numerical analysis techniques. Certain bonus lectures are also included.
This course introduces students to a range of powerful numerical methods and approximation techniques that are essential for solving complex engineering problems. Through a combination of theoretical understanding and practical application, students will gain the necessary skills to analyze, model, and solve mathematical problems encountered in various engineering disciplines. The course focuses on four key numerical methods: the Newton-Raphson method, the Secant method, the Bisection method, and numerical integration techniques such as the Trapezoidal rule and Simpson's rule.
By the end of this course, students will have developed a strong understanding of numerical methods and approximation techniques, enabling them to confidently apply these tools to solve complex engineering problems. They will also have gained valuable experience in implementing these methods using computational tools, enhancing their problem-solving and critical-thinking skills.